The Ninth Annual Game Design Think Tank
Project Horseshoe 2014

Group Report: Rapid Prototyping in the Now

by Thom Robertson of Incandescent Workshop LLC
with help from everyone at Project Horseshoe 2014

Problem Statement

Not enough has changed in the videogame industry. Giant teams with high turnover burn through
millions creating safe projects. While they connect with and hire from the major game dev schools,
industry players otherwise shoulder no responsibility for training new employees.

At the same time, the proliferation of cheap, powerful tools and the new, young, "indie" game devs allow
many more small, bold games to be generated quickly. Since any young, unemployed game developer
can call herself “indie”, the indie scene takes de facto charge of training new young developers.

As churn continues in the industry, these two worlds will come together, and the industry will not only not
make good use of the skillz indie developers have cultivated. Big industry companies will fundamentally
misunderstand and dismiss skillz of young developers, and force them to change.

Solution

This workgroup suggests that it is the game industry that must change. Big companies must stop relying
on the “gut instinct” of their owners, and also refuse to be guided by their marketing team.

Instead, they should embrace a prototype-heavy development structure, and embrace the rapid-
prototyping skills of the new generation of young devs.

A prototype heavy development structure is not new, and is fairly well understood. Many smaller
development companies (especially those who subsist on business from larger companies) learn the value
of rapid prototyping, and build small, ad-hoc teams and projects, tasked with quickly building prototypes
that will land contracts.

But when the contract is finalized, that same company will get down to the multi-year slog of building a
“real” game, leaving behind the specific skills and values that benefit rapid-prototyping. And the young
developers will have to adapt or leave.

Other companies that make “free-to-play” games also embrace rapid prototyping, but their path is also
alien to young indie developers. Instead they iterate on A-B tests and other detailed metrics, letting math,
ROI, and player churn determine what they create and sell.

Game companies should hire young indies, and USE their rapid prototyping skillz. They should allow
these new hires to do what they do best; wear multiple hats and quickly develop testable game prototypes
in small teams.

Rapid prototypes are valuable in three major ways. First, rapid prototypes are the best way to separate
good ideas from bad ones. Like the number of teeth in a horse’s mouth, actually playing a game gives
everyone the best understanding of whether that game is good and fun. And for game developers, the
question is rarely “is it fun?”. The most common question to answer is “How can we change it to achieve
maximum fun?” Which leads to the second aspect of value.

Rapid prototypes serve as THE most powerful descriptor/example of a game idea, serving the whole team
as a solid reference point. You can say “l have a great idea.” You can WRITE “l have a great idea.” You
can provide diagrams and other content. But nothing beats actually having a functional game in front of
you.

With a prototype, it’'s easy for every team member to understand you when you say “Make it twice as long”
or “Make it not so frantic.” A prototype beats all other forms of documentation. Its descriptive power, and
its ability to anchor the imaginations of the entire team are unmatched.

Finally, rapid prototypes can grow into finished games, without a complete rewrite. Many disagree with
this, and feel it's self-evident that prototype code and data must ultimately be thrown away, and replaced
by the “real” game.

| don’t agree. In my experience, it's all a matter of choosing the right tools and development processes.

It's quite true that rapid prototyping often results in clumsy or poorly designed code. But code is always
changing, especially in a larger team. Bad code has a tendency to stick around and accumulate in dark
corners of the codebase. But at the same time, teams of coders have a tendency to kick over the rocks

and attack bad code when they find it. This is a predictable behavior of certain types of coders, so team
dynamics (and a balance of team personalities) is important and worth managing.

It's easy to find examples of early (prototyping) content making it into finished products, even in big games
with no actual prototypes. And if that content is proprietary or requires licenses, it can be a disaster. But
don’t use this to tar prototypes. It's not hard to be careful with licensed content; Even prototyping
developers can learn to steer away from improper content.

And one of the many strengths of a skilled rapid prototype-er is the ability to find and integrate valid game
content quickly. For big game companies that have their own sound teams, this isn’t so important. But for
a mid-sized or small project, buying a music loop for $20 is perfectly normal, and (used appropriately, with
proper attention to license and attribution) is just as likely to be used in the final product.

Example

This game (Danc’s Endless Faller) was built during Horseshoe 2014, and serves as an example of how
rapid-prototyping can help communicate game ideas in a short time frame.

download the ZIP file containing this Windows game

Copyright 2000-2014, Fat Labs, Inc., ALL RIGHTS RESERVED

